Degrees and degree sequence of k-edge d-critical graphs

S. Arumugam *

1National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH)
Kalasalingam University
Anand Nagar
Krishnankoil 626126
India

2School of Electrical Engineering and Computer Science
The University of Newcastle
NSW 2308
Australia

Latha Martin †

Department of Mathematics
A.P.C. Mahalaxmi College for Women
Tuticorin, 628005
India

Abstract

Let k and d be positive integers with $k \geq 2d$. Let $Z_k = \{0, 1, 2, ..., k - 1\}$ be the set of integers modulo k. Let $D_k(x,y) = \min\{|x - y|, k - |x - y|\}$ for $x,y \in Z_k$. A pseudo complete d-coloring of G using k colors is a mapping $\phi : V(G) \rightarrow Z_k$ such that for any two elements $i,j \in Z_k$ with $D_k(i,j) \geq d$, there exist adjacent vertices u,v such that $\phi(u) = i$ and $\phi(v) = j$. The maximum value of k for which G is k-pseudo complete d-colorable is called the pseudo d-achromatic number of G and is denoted by $\psi^d_s(G)$. A graph G is called k-edge d-critical if $\psi^d_s(G) = k$ and $\psi^d_s(G - e) < k$ for all $e \in E(G)$. In this paper we present several basic results on the degrees and degree sequence of k-edge d-critical graphs.

Keywords: Star chromatic number, Pseudo complete d-coloring, Pseudo d-achromatic number, k-edge d-critical graph.

2000 Mathematics Subject Classification: 05C15