Second derivative parallel one block two point stabilised Simpson’s method

K. O. Muka *
M. N. O. Ikhile
Department of Mathematics
University of Benin
PMB 1154
Benin City
Nigeria

Abstract

We construct one block two point second derivative Simpson stabilized method. The method is of order four, and performs efficiently when compared with the method proposed in [11]. Numerical results are presented to show application of the method. The method is A-stable and can be implemented on two parallel processors simultaneously.

Keywords: Simpson’s method, parallel block methods, A- & L-stability.

1. Introduction

We seek a parallel numerical method suitable for stiff initial value problems of the form

\[y' = f(x, y), \quad y(a) = y_0, \quad x \in [a, b]. \quad (1.1) \]

In [11] a Simpson stabilized block method is constructed, the method is A-stable unlike the sequential Simpson’s method that has empty region of absolute stability [4]. In the spirit of [11] we present a Simpson Block method with second derivative as done in [3]. The method is of order four and yields two solutions simultaneously, see [1-12].

2. Construction of the parallel block method

Simpson’s method is given as

\[y_{n+2} = y_n + \frac{h}{3} (f_n + 4f_{n+1} + f_{n+2}) \]

and of order four. A parallel one block form is by

\[y_{n+2} = y_n + \frac{h}{3} (f_n + 4f_{n+1} + f_{n+2}) \]

*E-mail: kingsleymuk@yahoo.com

Journal of Interdisciplinary Mathematics
Vol. 13 (2010), No. 2, pp. 185–191
© Taru Publications