On cartesian product of vertex measurable graphs

A. Vijayan*

Department of Mathematics Nesamoney Memorial Christion College Marthandam, Tamil Nadu India

S. Sanal Kumar⁺

Department of Mathematics St. Xaviers Catholic College of Engineering Nagercoil, Tamil Nadu India

Abstract

In [2] for any graph *G*, a σ algebra \mathfrak{T} of vertex induced sub graphs of *G*, is defined and many of its properties are studied. Let G_1 and G_2 be two simple graphs. Let (G_1, \mathfrak{T}_1) and (G_2, \mathfrak{T}_2) be two vertex measure spaces. In this paper we introduce a σ algebra $\mathfrak{T}_1 \times \mathfrak{T}_2$, which consists of all vertex induced sub graphs of $G_1 \times G_2$, and it contains every vertex measurable rectangle graph of the form $H_1 \times H_2$, $H_1 \in \mathfrak{T}_1$ and $H_2 \in \mathfrak{T}_2$. Also, we introduce an elementary vertex measurable rectangle graph and a vertex graph monotone class and study some of their properties. Finally, we prove $\mathfrak{T}_1 \times \mathfrak{T}_2$ is the smallest vertex graph monotone class which contains all elementary vertex measurable rectangle graphs.

Keywords: vertex measurable rectangle graph, elementary vertex measurable rectangle graph, vertex graph monotone class.