ACCESSIBILITY AND EVERYWHERE CHAOS

HONGYING WU^{1,2} AND HUOYUN WANG¹ 1. DEPARTMENT OF MATHEMATICS OF GUANGZHOU UNIVERSITY, GUANGZHOU 510006, PEOPLE'S REPUBLIC OF CHINA 2. DEPARTMENT OF MATHEMATICS OF HUAIHUA COLLEGE, HUNAN 418008 PEOPLE'S REPUBLIC OF CHINA E-MAIL:WUHONGYING100@163.COM WANGHUOYUN@126.COM

ABSTRACT. A TDS (X, f) is called *N*-accessible if for any $\varepsilon > 0$ and any *N* nonempty open subsets U_1, U_2, \dots, U_N of *X* there are *N* points $x_1 \in U_1, x_2 \in U_2, \dots, x_N \in U_N$ and a positive integer *n* such that $\max\{d(f^n(x_i), f^n(x_j)) : i, j \in \{1, 2, \dots, N\}\} < \varepsilon$. A TDS (X, f) is called *N*-sensitive if there is a positive number τ such that in every nonempty open subset *U* of *X* there are *N* distinct points x_1, x_2, \dots, x_N of *U* and a positive integer *n* with $\min\{d(f^n(x_i), f^n(x_j)) : i, j \in \{1, 2, \dots, N\}, i \neq j\} > \tau$. A TDS (X, f) is called (N_1, N_2) everywhere chaotic if it is N_1 -sensitive and N_2 -accessible. We point out that there is a system which is (N_1, N_2) -everywhere chaotic, but it is not $(N_1 + 1, N_2)$ -everywhere chaotic for any positive integers N_1 and N_2 .

AMS Classification: 37B05, 54H20, 37B20, 58K15

Keywords: Accessibility, Sensitivity, Everywhere chaos.