

Further results on super mean graphs

R. Vasuki *

*Department of Mathematics
Dr. Sivanthi Aditanar College of Engineering
Tiruchendur -628 215
Tamil Nadu, India*

A. Nagarajan †

*Department of Mathematics
V.O. Chidambaram College
Thoothukudi -628 008
Tamil Nadu, India*

Abstract

Let G be a graph and $f : V(G) \rightarrow \{1, 2, 3, \dots, p + q\}$ be an injection. For each edge $e = uv$, the induced edge labeling f^* is defined as follows:

$$f^*(e) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even.} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

Then f is called super mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, 3, \dots, p + q\}$. A graph that admits a super mean labeling is called super mean graph. In this paper we study the super meanness of subdivision graph of $K_{1,3}$, super meanness of $P_{\tau,4}$, super meanness of some caterpillars and super meanness of some duplicate graphs.

Keywords: Super mean labeling, subdivision graph, caterpillar, duplicate graphs.
AMS Subject Classification. 05C78